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We give a model of the basic Jauch-Piron (JP) approach to quantum physics, 
i.e., of "preparation-question structure" (with four basic axioms and without 
axioms C, P, A), in terms of Ludwig's "selection structure"; in the latter structure 
the primitive notion of "individual sample" of a physical entity is formally 
described (without making reference to any probability concept). Once we inter- 
pret Piron's concept of "question" in Ludwig's context of a selection structure, 
we find that there is no difficulty in formalizing notions such as "performable 
together questions"; moreover, results such as "a -~=a  '' or "(aAfl)-= 
a~VYfl ~'' can be formally proved. We develop the theory along the lines of the 
JP approach; the set of JP propositions is derived and it turns out to be a complete 
lattice, as happens in Piron's theory, but with a different physical interpretation of 
the lattice operations. Finally, we study some connections between the standard 
Ludwig foundation and our approach. 

1. P R E L I M I N A R Y  REMARKS 

There are m a n y  axiomatizat ions o f  quan tum mechanics. We cite the 
foundat ional  work  of  Mackey  (1963), the operat ional  approach  of  Davies 
and Lewis (1970; Davies, 1976), the algebraic approach  to quan tum field 
theory o f  Haag  and Kastler (1964), the Jauch  and Piron (1969; Piron, 
1972, 1976a,b, 1981) foundat ion  o f  qua n t um  physics, and the axiomatic 
founda t ion  o f  Ludwig (1977, 1983; Neumann ,  1983). A feature characteriz- 
ing almost  all o f  these approaches  is the use o f  probabil i ty as a basic concept  
o f  the theory. The Jauch-P i ron  (JP) work (1969) can be distinguished a m o n g  
these approaches  because it has been successful, especially as presented in 
Piron (1976b), in recovering the full quan tum formalism "wi thout  making 
use o f  the not ion o f  probabil i ty ."  This approach  to quan tum physics is based 
on the following concept  o f  question (Piron, 1972) : 
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(DQ) "We define a question to be a measurement (or experiment) 
leading to an alternative of which the terms are 'yes' and 'no ' "  
when it is performed on a single sample of the physical entity. 

The idea of occurrence of a question is implicit in the theory: 

(OQ) If the performing of a question a gives the answer "yes" (respec- 
tively, "no")  for an individual sample, we shall say that a occurs 
(respectively, does not occur). 

This idea is very useful in order to explain the physical meaning of the 
axioms of the original JP theory. The real core of the JP theory makes use 
of the following dyadic predicate true involving preparations of individual 
samples (under well-defined and repeatable conditions) and questions (Piron, 
1976a) : 

(TQ) "When the physical system has been prepared in such a way that 
the physicist may affirm that in the event of an experiment the 
result 'yes' is certain, we shall say that the question is ' true'." 

All this shows that in the JP approach we have two distinct levels of 
description: the first one (DQ), which pertains to individual samples, leads, 
for a question, to the alternatives "yes" or "no"  (single test of the question 
on an individual sample) ; the second level (TQ), which pertains to aprepara- 
tion as a whole, assigns tO a question the value "true" if, for any individual 
sample so prepared, the answer "yes" to the test of the question is certain 
(elementary experiment of a pair preparation-question). 

In Cattaneo et aL (1988, 1989) and Cattaneo and Nistic6 (1991) we 
presented a formalization of the JP approach based on two classes of abstract 
signs and a two-argument predicate sign. The two classes of signs are phys- 
ically interpreted as describing the primitive undefined notions of "prepara- 
tion" of individual samples (formally denoted by x, y , . . . )  and of"quest ion" 
(formally denoted by a,/3 . . . .  ), respectively; the two-argument predicate 
sign is physically interpreted as "question true in a preparation" [formally 
denoted by (x, a)T]. 

The notion (OQ) of the occurrence of a question cannot be translated 
into the mathematical language of our formalized theory since no formal 
object describing an individual sample is introduced, neither as a primitive 
notion or as a derived concept. To be precise, no formula of the kind (i, a) Y 
[respectively, (i, a)N], semantically interpreted as "the individual sample i 
produces the answer 'yes' (respectively, 'no') in a test of the question a , "  is 
allowable in our formalization of JP theory. 

This lack in the formalization has several negative consequences, the 
most important being, in our opinion, the following three. 
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(a) In general, any statement proved in the JP framework by making 
use of  (OQ) is no longer a theorem in our formalized JP theory; indeed, it 
may happen that for a statement of  this kind a formal proof  (i.e., a proof  
which uses only formalized concepts) does not exist. In this case, the only 
way of  formalizing the statement is that of  introducing it as an axiom, and 
this can be done when (OQ) does not explicitly appear. 

Example 1.1. Piron once presented the following definition: 

Definition 1.2. " I f  a is a question, we denote by a ~ the question 
obtained by exchanging the terms of the alternative" (Piron, 1976b). 

Jauch and Piron make the following statement: 

Proposition 1.3. "I t  is clear that a = (a~)~" (Jauch and Piron, 1969). 

We see that a p roof  of  Proposition 1.3 cannot be given without making 
use of  the notion of  the occurrence of a question; therefore, although phys- 
ically evident, we cannot find a mathematical  p roof  in the formalized JP 
theory which does not contain (OQ). May we establish Proposition 1.3 as 
an axiom? No, because the definition of the question a -  requires the notion 
of the occurrence of  a question, too. 

(b) Another kind of problem arises when we face the description of 
two or more performable together questions. Let us quote Aerts (1982): 

We shall say that we can perform both questions a and fl together iff there exists 
an experiment E(a, t) having four outcomes that we shall label by {yes,yes}, 
{yes,no}, {no,yes} and {no,no}, [...]. We will define the question 

a Aft which consists of performing the experiment E and attributing the 
answer "yes" if we get the outcome {yes,yes}. [...] 

a Vfl which consists of performing the experiment E and attributing the 
answer "yes" if we get the outcomes {yes,yes}, {yes,no}, or {no,yes}. 
b..l  

aOfl which consists of performing the experiment E and attributing the 
answer "yes" if we get the outcomes {yes,yes} or {no,no}. [...] 

This definition of performable together questions and of new questions 
aAfl,  aVfl,  a@[3 is physically correct. However, it is also true that it 
cannot  be translated into the mathematical  language of our JP formalized 
theory. 

(c) Another  fundamental shortcoming of our formalized JP theory, and 
of  customary quantum mechanics as well, is that "an individual experimental 
result, e.g., an individual trace in a cloud chamber, cannot be compared with 
the theory [ . . . ] .  For  instance, it is not possible to translate into mathematical  
language such propositions as ' the position of  this individual electron has 
been measured in the region ~ / ' "  (Ludwig, 1977). 
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On the contrary, Ludwig's (1977, 1983) foundations of quantum mech- 
anics has the merit that "every experimental result (also if concerning an 
individual microsystem) can be described by a mathematical relation." Pre- 
cisely, Ludwig's approach is mathematically based on a "selection structure" 
on a set M; the points of M are physically interpreted as "images" of indi- 
vidual samples of a physical entity (in this way, semantically, the notion of 
"individual sample" is a primitive one). "This general framework allows us 
to consider single physical systems, and not only ensembles, in the mathe- 
matical picture" (Neumann, 1983). We stress that at the level of selection 
structure no use of statistical concepts is made. 

Obviously, the whole Ludwig theory has a stronger mathematical struc- 
ture (involving in particular a mapping ~ with a physical interpretation of 
relative probability) which characterizes it as a statistical theory. Quoting 
Neumann (1983), "Probability is introduced as a relative (or conditional) 
probability of two experimentally well-defined procedures employed for the 
selection of the objects under consideration. The mathematical scheme so 
developed is called a structure of 'statistical selection procedures'." 

In the present work we only take into account Ludwig's "selection 
structure." Our aim is to make a first step along the direction of formalizing 
Piron's approach starting from the primitive notion of "individual sample" 
of a physical entity. We believe that Ludwig's "selection structure" is the 
suitable framework to reach this result. In particular, we produce an interpre- 
tation of Piron's "preparation-question structure" in Ludwig's "selection 
structure" in such a way that the four basic axioms of Piron's approach, 
under the interpretation, turn out to be true (i.e., theorems) in Ludwig's 
structure. In other words, we construct a model of the basic Piton theory 
(without Axioms C, P, A) in Ludwig's selection structure (without statistical 
notions). 

2. LUDWIG'S SELECTION STRUCTURES AND JP QUESTIONS 

In this section we introduce the Ludwig's selection structure as the more 
suitable environment to assent to the "program of realism" invoked by JP 
and consisting in giving "a complete description of each individual system 
as it is in all its complexity" (Piron, 1976b). According to Ludwig (1977), 
"To give a mathematical picture of such experiments on individual systems, 
it is necessary to introduce a set M, the elements of which shall be 'images' of 
the system"; the physical interpretation of the formula " iEM" is as follows: 

"Given a special atom i in an experiment, the relation i sM should be 
the mathematical form of the proposition: i is a physical system. 

However, the relation i~M reflects the proposition 'i is a physical system' 
only if the set M is endowed with a structure as an image of preparing and 
recording procedures" (Ludwig, 1977). 
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Definition 2.1. A structure of selection procedures, or briefly a selection 
structure, is a pair (M, 5:) ,  where M is a nonempty set and 5: is a subset 
of the power set N(M)  such that the following conditions hold (x\y being 
the relative complement of x in y) : 

(S1) x, y ~ J  and yc_x imply x\ys5: .  
($2) x, y ~ 5 :  implies xcayeSr 

A complete selection structure is a selection structure in which condition ($2) 
is substituted by the following condition: 

($2c) {xj} c_5: implies ~]xje5 e. 

According to Ludwig (1977), "The physical interpretation of 'iex and x e 5  ~' 
is as follows: 

The physical system i has been selected by the selection procedure x. In 
this sense, an element xeS :  represents the method of selecting as well 
as the family of single samples of the physical system selected by this 
method." 

Of course, the empty set ~ is an element of 5:, called the trivkff selection 
procedure. We set 5~ ' :=5~\{~}  in the sequel. If x s 5  ~ then the set 
~ ( x )  := {y :y e 50 and y ~ x } is a Boolean algebra of sets, called the laboratory 
induced by x. 

2.1. Questions and Selection-Question Structures 

The selection structure (M, 50) is the basic mathematical structure on 
which Ludwig has founded his approach to QP. Now, we introduce in this 
Ludwig framework the derived concept of a question, according to Piron's 
approach, giving in this way a link between these two approaches (from now 
on, for the sake of simplicity, we denote selection structures by 5:) : 

Definition 2.2. Let 5: be a complete selection structure; a question for 
Y is any mapping defined in 5:, a : ~  ~ 5:, satisfying the following 
conditions. 

(i) ~ ,  the definition domain of the question a, is a subset of 5: such 
that: 

(a) ~ e N ~ .  
(b) {xi}--c~ implies N , - x t e ~ .  
(ii) For every xEN~, a(x) c_x. 

(iii) For every xl, x2sN~, a(xl ca x2) = a(xj) ~ x2. 
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If a is a question, we say that a is performable in the preparation 
x i f f x ~ ' ;  moreover, for every x ~ "  the pair (x, a) is called the yes-no 
elementary experiment consisting of the preparing process x and  of the ques- 
tion a, with associated recording (or counting)process a(x). 

For every yes-no elementary experiment (x, a),  we define the occurrence 
function as the characteristic functional of the subset a(x), restricted to x, 
t(~,~): x ~ {0, 1}, defined by the law 

{10 if iEa(x) 
Vi~x, t(x,~)(i):= if i~x\a(x) 

The physical interpretation of the yes-no experiment "(x, a )"  is as follows: 

x is a procedure to prepare individual samples of the physical entity 
and a is a question which is performable on x and which tests any 
single sample iex giving the answer "yes" if t(x,~)(i)= 1 and "no"  if 
t(~,~)(i) =0. 

The physical interpretation of the formula "i~ a(x) ~_ x" (respectively, 
" je  x \  a (x) _ x")  is as follows : 

i (respectively, j) is an individual sample from the preparation x which 
has produced the answer "yes" (respectively, "no")  in a single test of 
the question a. 

In this way, the performance of an "elementary experiment" (x, a) consists 
in the "preparation" of an ensemble x of individual samples iex of the 
physical entity and in the "test" on each of these samples of the question a, 
producing the subensemble a(x) [respectively, x\a(x)] of those samples 
which have given the answer "yes" (respectively, "no").  The dichotomic 
"yes-no" behavior of the question a in a single test is formalized by the 
trivial properties a(x) n (x\a(x) )= if5 and a(x) u (x\a(x))=x.  Note that 
if xe@~, then in general ct(x) is not an element of N~, corresponding to the 
fact that the execution of the question a on a sample can destroy the sample 
under discussion. 

On the basis of the above interpretations, the meaning of conditions (i) 
and (ii) in Definition 2.2 turns out to be clear. Now, it is easy to prove that 
condition (iii) is equivalent to the following: 

(iii)' Let xl,  x 2 E ~ ;  then for every i~xl n x2, t(.~,.~)(i)= t(x2,~)(i). 

Thus, the interpretation of condition (iii) in Definition 2.2 is simply 
that the outcome of a test of the question a is fixed for every individual 
sample ieM~ = U . ~ ,  x and it is independent of the particular preparation 
x (with iex). Therefore, our notion of question agrees with the (DQ) 
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statement. Moreover, the notion (OQ) of  "occurrence of a question" in 
a single test finds an appropriate formalization: Va, k/ iex~M~, (i, a ) Y  
[respectively, (i, a)N] iff t0~,~)(i ) = 1 (respectively, =0). 

The trivial question, denoted by O: {~}  ~ 6 e, is defined by 0 ( ~ ) =  
(hence a question a is the trivial question iff ~6 = {~}  ). We call null ques- 
tion any question a such that V x ~ ,  a(x) = ~ .  For the sake of  brevity we 
put in the sequel M~:= U ~  x ~ M  and ~ ' : = ~ \ { ~ 5 } .  

Remark 2.3. Trivially, any question is a monotonic mapping [i.e., for 
every Xl, x e ~ ,  Xl~-X implies a(xOc_a(x)] such that for every family 
{x,}  x,)  = (7; 

In the above definition, under conditions (i) and (ii), condition (iii) is 
equivalent to the following two conditions: 

(iiia) The mapping a~: ~6 ~ 5 r, x ~  a~(x):=x\a(x)  is a question, 
called the inverse question of a. 

(iiib) For every xi, x2e@~, a ( x i n x z ) = a ( x O n a ( x 2 )  and 
a-(x  n = a - ( x , )  n 

Note that according to the proposed formalization, the statement "a  ~~= 
a "  is a theorem. 

Definition 2.4. A preparing-question structure (pq-s) is a structure 
p Q : =  (St,  .~; O; L ~ )  where: 

(AXl) 

(AX2) 

5 a, the set of  preparations of PQ,  is a complete selection 
structure. 
2, the set of  questions of PQ, is a set of  questions a : ~ ~ 6 r 
(it is not required that ~ contains all the possible questions for 
5 e) such that: 
(i) The trivial question 0 belongs to .~. 

(ii) - and I are unary operations on ~ which to every question 
a e.~ associate the inverse question a -  and the relative 
certain question 16 of a respectively defined by: 
(a) a~: ~6 ~ 5 p, where V x ~ 6 ,  a-(x) :=x\a(x) ;  
(b) I6:@6 ~ 5 e, where VxeN6,  I6(x):=x. 
(i.e., for any question a~.~, both questions a - ,  I6s~) .  

A pq-s is said to be surjective iff the further conditions holds: 

(AX3) 9 ' = U 6 ~ 6 .  
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2.2. True Questions 

According to Aerts (1982), it is now possible to formalize correctly the 
further statement: 

Definition 2.5. We say that in the preparation xeN~ of the question a 
there is a certain chance to obtain the answer "yes" (respectively, "no")  for 
a [or also, "yes" (respectively, "no")  is a possible answer for a] iff there 
exists i~x such that t(x,~(i)= 1 [respectively, t(x,~)(i)= 0], i.e., iff a(x)r  (g 
[respectively, x \a(x )~  ~] .  Moreover, we say that in the preparation xeN~ 
the chance to have the answer "yes" (respectively, "no")  for the question a 
is the certainty iff a(x)= x [respectively, a(x)= fg]. 

Now we can introduce the following new derived signs of our mathe- 
matical theory, linking preparations and questions. 

Definition 2.6. We denote by T and F the signs respectively defined by 

(x, a)T iff x e ~ "  and a(x)=x 

iff for every iex, tx,~(i) = 1 

(x, a)F iff x e N "  and a ( x ) = ~  [i.e., a-(x)=x] 

iff for every iex, tx,,(i)=O 

Moreover, let x e @ ' ;  then we set (x, a)U iff neither (x, a ) T n o r  (x, a)F. 
For any question a we define the following three subsets of 5 e: 

(i) 5~r(a) = {xeD~t(x, a)T}. 
(ii) 5ev(a) = {xeD~ [(x, a)r}. 

(iii) 5Pu(a) = {xeD~l(x, a)U}. 

The physical interpretation of formula "(x, a)T" [respectively, "(x, a)F"] 
is as follows: 

In the preparation x the question a is "true" (respectively, "false"), 
i.e., the chance to obtain the answer "yes" (respectively, "no")  in the 
preparation x for the question a is the certainty. 

This interpretation agrees with the (PT) Piron definition. 

"When the physical system has been prepared in such a way [x] that 
the physicist may affirm that in the event of an experiment [(x, a)] the 
result 'yes' [respectively, 'no'] is certain, we shall say that the question 
[a] is "true" [respectively, 'false']" (Piron, 1976b). 
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2.3. Performable Together Questions 

If  a and fl are two questions, then in general it makes no sense to 
perform both questions together. Indeed, it could happen that we can execute 
a on the single sample i e x ~  but that we cannot execute fl on the same 
sample since the execution of a has destroyed the sample under discussion. 
The possibility of performing together two questions on the samples of a 
certain preparation is formalized in the following definition. 

Definition 2.7. Let a, fl be two questions. Then we will say that: 

(i) a and fl are performable together iff ~ c~ @0-r { ~ } ;  in this case 
we write a(pt)fl. 

(ii) a and fl are globally performable together iff @~ = D 0 r ~ ;  in this 
case we write a(gpt)fl. 

(iii) a and fl are not petformable together iff ~ c~ N 0 = {~}.  

So, we have two binary relations defined on the set of all questions: the 
relation (pt) of being performable together, which is symmetric and reflexive 
but in general not transitive, and the equivalence relation (gpt). For fixed 
xE5 ~, x # ~ ,  we have the following equivalence relation on .~. 

a(pt)xfl iff x ~ n D  0 

iff a and fl are performable together in x 

Let us consider two questions a and fl which are performable together, i.e., 
~ c~ ~0 4= { ~ } ,  and set M~,o := U.~E~, ~ ~ x _ M, which, for the above con- 
dition, is not empty. 

Definition 2.8. For any pair of performable together questions a and 
fl, the experiment induced by a and fl is the mapping E~,0: M~,a ~,  {(1, 1), 
(1, 0), (0, 1), (0, 0)} defined as follows: 

ViEM~,p, E~.0(i ):=(t(~,~)(i), t(x,o)(i)) 

For every iEM~,~, the pair (t(x,~)(i), t(x,0)(i)) is called the outcome of the 
experiment E~.p produced by i. 

The physical interpretation of experiment E~,O is as follows: 

Given a preparation xe@,  n ~ ,  both questions a and fl are tested on 
every sample i prepared by x and the pair (tx,~(i), tx,p(i)) is taken as 
the outcome of the experiment E~,O. 
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Because of  the physical interpretat ion o f  the experiment  E~.p, one expects 
that  the relations defined in Definition 2.6. are related with the outcomes o f  
experiments E~,p. Quoting Aerts (1981), 

a is true iff we are certain to get one of the outcomes {yes,yes} or {yes,no} for 
the experiment E. 
a~ is true iff we are certain to get one of the outcomes {no,yes} or {no,no} for 
the experiment E. 
fl is true iff we are certain to get one of the outcomes {yes,yes} or {no,yes} for 
E and 
fl~ is true iff we are certain to get {yes,no} or {no,no} for E. 

The following results show that  these statements hold in our  framework.  

Proposition 2.9. Let a and fl be two performable together questions 
such that  xe@~ n ~ p .  Then  the following statements hold:  

(i) (x, a)T iff E~,p(x)___{(1, 1), (1,0)}.  
(ii) (x, a~)T iff Ea,~(x) ___ {(0, 1), (0 ,0)}.  

(iii) (x, fl)T iff E~,~(x) c_ {(1, 1), (q, 1)}. 
(iv) (x, f l-)T iff E~.0(x)__q {(1, 0), (0, 0)}. 

Proof Indeed, E~,~(x)___{(1, 1 ) , (1 ,0 )}  iff Viex, E~,~( i )=(1,  1) or 
E~,~(i) = (1,0) iff u t~,~(i) = 1 iff (x, a)T. The other  statements have 
similar proofs.  �9 

2.4. Preparing-Question Structure in Ludwig's Selection Structure 

For  every pair, a ,  fl o f  performable together questions three nontrivial  
mappings aAfl ,  aVfl ,  and a@fl with domains ~ A t ~ = ~ a v ~ = ~ e p  = 
~ a  n ~ p  can be defined as follows: 

(a  A f l ) (x ) :=  a(x) c7 fl(x) (2.1) 

(a  V f l ) ( x ) : =  x\[a-(x) n fl~(x)] = a(x) u fl(x) (2.2) 

(a Qfl)(x):= [a (x)  n fl(x)] u [ a - ( x )  n f l - (x) ]  (2.3) 

Proposition 2.10. The following statements hold:  

(i) I f  a and /3 are questions, then a(pt)xfl implies a~(pt)xfl and 
a(pt)xa A fl, a(pt)~a V /3, a(pt)xa@/3. 

(ii) If  a , / 3 ,  and y are three questions pairwise performable  together,  
then a (pt)x/3 A 7, a (pt)xfl V 7, and a (pt)~fl G ~', for  every x e @~ n Nr c~ Y r .  

F r o m  the physical point  o f  view, we may  assume that  a A/3, a V/3, and 
aOfl  are new questions, i.e., concretely realizable questions starting f rom 
two performable  together questions a and/3 .  We put  this in a formal  way 
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by introducing the concept of preparing-question structure in the context of 
Ludwig's (L) selection structure. 

Definition 2.11. An L preparing-question structure (L-pq-s) is any 
structure PQ~ = (A a, 2;  O; I, -, A ), where: 

(AXL2) PQ = (50, 2;  O; I, - )  is a preparing-question structure. 
(AXL2) A is a mapping {a j}~(2)~-~  Aaj~2,  where ~(2)  is the 

power set of 2, such that ~ j = N  ~ /  and for every 
xe~ j ,  (AaA(x):= 0 aAx). 

Proposition 2.12. Let (5 ~, 2;  O ; / ,  -, ~ )  be an L-pq-s. Then: 

(i) For every family {aj} of questions from 2 the question Vaj:= 
(+  a ; )~ s  2 exists such that 

@v~r = ~ @~j and V aj(x) = U aj(x) 

(ii) For every family of questions {ai}, the question Oa~: = 
( A a;) V ( A aT) e 2  exists such that 

~e~, = N ~ ,  and (Oai)(x)  = [(N a~)(x)] w [(-] aT(x)] 

The following proposition about performable together questions, some 
of which appeared in Aerts (1982), can be easily formally proved in a 
L-pq-s. 

Proposition 2.13. Let a and/3 be two questions that can be performed 
together; then for every x e ~  ca ~ ,  

(x, aA/3)T iff (x, a )T  and (x, f l )T 

iff Viex, E~.,(i)=(1, 1) (2.4) 

Moreover, (x, a V/3)T iff Vi~x, E~,p(i)e {(0, 1), (1, 0), (1, 1)}, from which 
we get 

(x, a )T  or (x, f l )T implies (x, a V f l ) T  (2.5) 

Proposition 2.14. In any L-pq-s the following statements hold: 

(i) VxeN~, Viex, t(~,l.)(i)= 1. 
(ii) V x ~ ,  Viex, t(x,~-)(i) = 1 - t(x,.)(i). 

(iii) VxeN@~j, Viex, Vj, t(~,,~j~(i)=l iff t(x,A~A(i)=l and 3j, 
t(~,~j)(i) = 0 implies t(x, zx~9(i ) = O. 
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According to the physical interpretations stated in Section 2, we have 
the following interpretations pertaining to the JP approach to QP (Cattaneo 
et al., 1988, 1989; Cattaneo and Nistic6, 1992): 

(PD1) For every question a the relative certain question I~ exists, 
which consists in measuring a and applying to each answer (1 
or 0) of a the trivial Boolean function 1B: {0, 1} ~ {0, 1}, 
associating to any ie{0, 1} the number 1B(i)--1. 

(PD2) If a is a question, a -  is the question, called the opposite or the 
inverse of a, obtained by exchanging the terms of the alterna- 
tive, i.e., it consists in measuring a and applying the Boolean 
negation to each answer of a. 

(PD3) If { aj} is a family of questions, then A aj is the question defined 
in the following manner: 
(1) For every individual sample from x e ~ , j  one performs 
every experiment corresponding to aj. 
(2) One attributes to A aj the answer "no" if at least one of 
the samples has produced the answer "no," and the answer 
"yes" otherwise. 

Moreover, the following statements, which are hidden axioms in the JP 
theory (Cattaneo et al., 1988), turn out to be theorems: 

Proposition 2.15. In any L-pq-s the following are satisfied: 

(AXJP1) 
(AXJP2) 
(AXJP3) 

(AXJP4) 

V x e ~ ,  (x, I~)T. 
Vxe@~, (x, a - )F  iff (x, a)T. 
Vxe~A~j, (x, Aaj)T iff Vaj, (x, aj)T and (x, aj)F implies 
(x, Aaj)F. 
There is no xe@~ such that (x, a)T and (x, a)F. 

3. JP  PROPOSITIONS AND STATES 

We now have the following derived definitions involving an L-pq-s 
according to Piron's approach to quantum physics. 

Definition 3.1. Let a, fle~. Then we will say that: 

(DF1) For any question a, ~ contains also the inverse question I~ 
which is the relative absurd question, denoted by O~. 

(DF2) a is less than fl, symbolized by a-~fl, iff (x, a)T implies 
(x,/~)r, iff ~T(a) ~_~T(/~). 

(DF3) a is JP-equivalent to fl, denoting this by a - J r  fl, iff a-~fl and 
fl<:a, iff ~r(a)=~r(f l ) ;  the relation _-_]p is an equivalence 
relation on ~. 
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(DF4) Any JP-equivalence class is called a JP-proposition. 
(DF5) The quotient set 2 \  ~_jp of all JP propositions will be denoted 

by ~ .  The elements of ~ will be denoted by a, b, c , . . .  (with 
indices, if necessary). 

(DF6) A JP-proposition a e ~  is true in x, written (x, A)T, iff Va ca, 
(x, a)T. 

(DF7) Let a, b z ~ ;  then a~_biffar f leb and a-<fl is a partial 
order relation on ~ with respect to which we will denote, if 
they exist, by f~ and U the g.l.b, and the l.u.b., respectively. 

Let Iv be the relative certain question of a~.~. We have 5%(I~)= 
@~ and 5~v(I~)= {~}, i.e., 5%(O~)= {~}. Therefore, all relative absurd 
questions are JP-equivalent to each other and form a unique JP-proposition 
denoted by O. On the other hand, two relative trivial questions Iv and Ip 
are JP-equivalent i f f ~  = ~ ,  i.e., iff a(gpt)fl. 

Proposition 3.2. Let (5~,~; / ,  -, A )  be an L-pq-s; then the poset 
( ~ ,  __ ) is a complete meet-lattice in which we have that 

g.l.b.{aj}=-(~ aj=[Aaj]jp for ajeaj 

Therefore, the JP-proposition 

O = N a  
a e ~ "  

exists and is the minimum element of ~ .  

Proof From @ A ~i = (~ @~ we have that ~ ~x,i- @a~ for all k; moreover, 
from Aaj(x)= N aj(x) =x it follows that aj(x) =x, i.e., Aaj-<a~ for all k. 
Let ?' be a question such that ?'-<as for all j ;  then x e ~  r and ?'(x)=x 
implies xe@r and Otj(X)=X for all j, that is, ~ a j ( x ) - A a j ( x ) = x ,  i.e., 
?'~,Aaj. �9 

Theorem 3.3. In an L-pq-s the following are equivalent: 

(i) ( ~ ,  _ > is a complete lattice in which 

1.u.b.{aj} - U  aj = ( ]  {be~q': (Vj), (aj___b)} 

(ii) The JP-proposition 

~:=U a 
ae.s 

exists in ~ .  
(iii) A question I exists, called the certain question, such that ~ =  5p 

and I(x)= x for all x e5 e. 
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The certain question I is the unique question of the maximum element 
of the lattice 5~. 

Proof Let (i) be true; then ~ = Ua~.~ a exists in s 
If  (ii) is true, then the relation a_~ ~ holds for every a e ~ .  This means 

that for every a e~  and every I ~  

a - < I  and I6-<:I 

Now, for every x e 6  e, let us choose a e~  such that xe@6 (AX3); therefore, 
since xe@la and I6(x) =x, for every Ie~ we have xe@i and I(x) =x. 

Let now (iii) be true; then the set 

{ b e ~ :  (Vj), (a:~b)} 

is not empty since [I]jp belongs to it. Owing to Proposition 3.2, the 1.u.b. of 
any family {aj} of JP-propositions is just (~ {beL~: (Vj), (aj~b)}. �9 

In the case of two questions {a,/3} e~,  Definition 2.8 assures the exist- 
ence of the question, denoted by a A fl, such that @6 as = @a c~ ~z  and 

(a  A/3)(x) = a(x) c /3(x) 

This question could be a relative absurd question a A/3eO. For instance, 
let us suppose that @6 c~ ~ p =  {~}.  Hence, a and/3 are not performable 
together. Now we consider the JP-propositions a = [a]jp and b = [fl]jp. Given 
any question )', we have 5:r(Or)~_S:v(a ) and 5:v(OT) c_S:V(fl ), i.e., for 
every ye.~, Or-<a and Or~/3. From this it follows that 

0 = [Or]jp ~_ a, b 

On the other hand, let 5 be a question such that 6-<a and 5~/3. Let x e ~ 6  
be such that 5(x)=x; this implies, in particular, x e ~  and x e ~ ,  i.e., 
x e ~ 6  n 5~ = {~}.  Then 

fi-<a, 5-</3, and 5(x) imply x=~Z~ 

Therefore, the following proposition holds. 

Proposition 3. 4. If  two questions a and fl are not performable together, 
then 

Remark 3.5. In agreement with Piron (1976b), we have called JP-propo- 
sitions the equivalence classes of questions; in the same way as Piron~we 
find that under the assumption of the existence of the certain question I~ 
the set 5e of all JP-propositions turns out to be a complete lattice. However, 
it must be stressed that there is a profound difference between the physical 
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interpretations of the meet a n b of two JP-propositions, as defined in the 
present work, and Piron's one a n pb. Indeed we have the following two 
physical interpretations of  the formulas (x, a c~ b)7  and (x, a c~pb)~-: 

(x, a n b )7  "On each physical sample iex, two questions a ea and 
peb  are performed together, and the outcome yes is 
obtained for both a and/3."  

(x, a n pb)7  " I f  we perform (not together) one of two questions a ca  
and/3 eb on each sample iex, the answer yes is obtained 
with certainty." 

In the remaining part of the present section we shall assume that the involved 
L-pq-s satisfies one, and therefore all, of  the statements of Theorem 3.3. 

We recall that the approach we have outlined here is based on the 
primitive notion of an individual sample of a physical entity, from which the 
derived notion of the preparation of samples (as a subset of individual samples 
identified with the derived notion of ensemble of samples) has been formal- 
ized by the structure 5" of  selection procedures based on a set M. We must 
underline that the assimilation of states of the Piron approach with prepara- 
tion procedures is a real misunderstanding. Indeed, in Piron's approach, 
states are suitable equivalence classes of  propositions [and so in our formal- 
ized context it turns out to be a new derived notion based on (DF4)]. 

We quote the definition of a state according to the JP way of  thinking: 

(DS) The state associated to a preparation procedure x is the set o-(x) 
of all propositions (or properties) actually true (or certain) for 
the system prepared in x. 

This definition matches with the following statement of  Piron (1981): "If 
one given system has been prepared [x] in such a way that we can affirm 
that in the event of the experiment [aea] the expected result would be 
certain [(x, a)T, i.e., (x, a)l-], we will say that the corresponding property 
[associated to a] is an actual property of the system [in x], in opposition to 
the other properties which [in x] are only potential." In this case any indi- 
vidual sample prepared in x actually possesses all the properties correspond- 
ing to the propositions of  the state o-(x). We intend to present now the 
formal definition of  the JP "state" and the related properties: 

(DF8) 

(DF9) 

(DF10) 
( D F l l )  

The JP state associated to the preparation procedure x is the 
subset of propositions o-(x) = { a e 2 ' :  (x, a)l-}. 
The set of all states is I2:= {o-(x): xeS} .  The elements of 2 
will be denoted by u, v, w . . . .  (with indices, if necessary). 
A JP pure state is any JP state or(x) which is maximal in 2;. 
The set of  all JP pure states is denoted by 12p. 
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(DF12) 

(DF13) 

A pure preparation is any preparation Xp ~ S whose associated 
JP state r is pure. 
We denote by Sp the set of all pure preparations; evidently, 
zp: = S p ) .  

For any preparation x ~ 5 p the set o-(x) is the collection of all JP proposi- 
tions which are actually true, i.e., true with certainty, in x. This set determines 
all the physical properties that can be attributed with certainty to the samples 
of the physical entity prepared according to x, whether the state has been 
measured. Thus or(x) embodies the amount of information actually available 
for any single sample of the physical entity prepared according to x. Hence, 
if xp~Sp is a pure preparation, the information available on any individual 
sample prepared according to Xp is maximal, i.e., r embodies a maximal 
amount of information. 

The following theorem collects some basic properties of JP states (Jauch 
and Piron, 1969; Cattaneo et al., 1989; Cattaneo and Nistic6, 1992). 

Theorem 3.6. The set Z of all JP states satisfies the following properties: 

(SI) IfaEo-(x) and a~_b, then bsa(x). 
($2) If {ai: ieI)~_r then Ni~,ai~cr(x). 
($3) O~cr(x), ~ Eo-(x) for every o-(x). 
($4) For any a s A  ~, a r  there exists at least one o-(x) such that 

aEcy(x). 

If  for every xES, we put 

e(x)= 
aeo(~ 

[which, owing to ($2), exists], then e(x)E r and 

o-(x) = {a65g: e(x) ~_a} 

Hence, we can conclude that a(x) is characterized by e(x). Furthermore, let 
us denote by A~ the set of all atoms in the lattice 5r whenever an atom 
e~ or(x) c~ 5r exists, then e = e(x). 

Theorem 3. 7. For every pure preparation xpESp, the proposition e(Xp) 
characterizing the state a(Xp) is an atom of the lattice (A ~ 0 ,  _ ) .  

Conversely, for every atom e of the lattice (Ar 0 ,  _~) a pure prepara- 
tion xp~Sp exists such that e(Xp)=e. 
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It follows from Theorem 3.7 that every atom of ~ can be bijectively 
associated to a JP pure state according to the following one-to-one and onto 
correspondence: 

O'(Xp) ~ e(Xp) 

The existence of this one-to-one mapping allows us to identify any pure state 
with the corresponding atom. While all the above definitions and results 
about JP states can be found in the work of JP (see, for instance, Jauch and 
Piron, 1969), the lack of any formalization of the notion of preparation 
neglects some important aspects which we now complete. Let x, y~Y.  

(DF14) The CGN equivalence relation on preparations is defined as 
x ' ~ y  iff o-(x) = or(y). 

(DF15) A CGN state is any equivalence class [x]~:={y:y , .~x}  = 
{y: or(y) -- o-(x)}. 

(DF16) The set of all CGN states is denoted by S:= {[x]~ : x~5:}.  
(DF17) The JP state associated to a CGN state is o-([x]~):=o-(y), 

whatever be y ~ [x] ~. 

Any CGN equivalence class of preparations [x] = = {y: o-(y)= o-(x)} is 
identifiable with the unique JP state o-(x), which is defined as the JP state 
cr([x] ~) of the whole equivalence class of preparations [x] =. In symbols, 

Z = S  

~(x)  ~ [xl 

Thus, for a JP state we can mean both the equivalence class of preparations 
[x] ~ and the set o-([x] =) of all propositions true (properties actual) in this 
state. 

4. ORTHODOX LUDWIG EFFECTS AND CORRESPONDING 
P I R O N  QUESTIONS 

In this section we investigate the connections between an L-pq-s and 
the orthodox Ludwig axiomatic foundation of quantum physics. The Ludwig 
approach to preparing-recording structures can be synthesized by the follow- 
ing structure based on M. 

Definition 4.1. A complete Ludwig's preparing-recording structure 
(L-w-s) on M is a triple PR:=  (q/, (~0, ~ ) ) ,  where: 

(PR1) ~ is a complete selection structure and ~o, ~ are two selection 
structures on M. 

(PR2) ~ o ~ .  
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r is the set of preparing procedures, ~o the set of recording methods, and 
the set of recording procedures. Following Ludwig, let us introduce the set 
of all effect procedures 

~ : =  {(bo, b): boer| b ~ ,  b~_bo} 

Any effect procedure f =  (b0, b)e@ consists of the "recording procedure" 
b e n  and of the "recording counter" (or "recording apparatus") b0~N0. 

Remark 4.2. The set ~- contains the element ( ~ ,  ~Z~), called the null 
effect; we denote by ~ ' : = ~ \ { ( ~ ,  ~ )} .  

We quote Ludwig (1977): 

The recording process [(bo, b)~'o x ~, b~_bo] is characterized by two steps: 
(1) Construction and employment of the recording apparatus [borZoi. 
(2) Selection according to signals which "appeared" [b+ = b ~ ]  or "did not 

appear" [b_ = bo\b~] on the recording apparatus employed. 
(...) Generally ~' is the set of all those selection procedures which are finer 

than the procedures of ~o; finer by virtue of the influence of the microsystems 
on the apparatus, represented by the elements of ~2o. 

Remark 4.3. It is straightforward to show that for any family {5:j} of 
selection structures (respectively, complete selection structures) based on the 
same set M, their set-theoretic intersection ~ j  5:j is a selection structure 
(respectively, complete selection structure) based on M. 

Let | be any family of subsets of M; then 5 : (0 ) :=  ("].i 5:j(| where 
{ 5:j(| is the collection of all the selection structures (respectively, complete 
selection structures) containing 0 ,  is the selection structure generated 
by | 

Once given the above L-pr-s, we define the set 

|  { a n  b: a ~8./, b ~ }  

5:(0)  is the complete selection structure generated by 0.  Let aeS/  
be a preparing procedure and ( b 0 , b ) ~  an effect procedure; then we 
have the following physical interpretation of the formula " x = a n b e |  
and i~x" : 

"An element x=ac~b~| is the set of all systems i prepared by the 
procedure a~Vll and recorded by the procedure b E ~ "  (Ludwig, 1977). 

Proposition 4.4. For any f =  (bo, b) e~-, setting 

~ f =  {a c~ bo: a~q/} _,9~174 
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we have that: 

(il) ~ e 2  s. 
(i2) {(aj nbo) :j~J} ~-~s implies 0 j  (aj n bo)e~ s. 

The mapping 

Cry: @sV-~SQ| a n b o ~ a s ( a n b o ) : = a c ~ b  

is a question based on ~( |  called the L-question induced by the effect 
procedure f ;  the set of all such L-questions is denoted by .~(~). 

In particular, for any given effect procedure f =  (b0, b ) ~ ,  there exist 
the two effect procedures !r=(bo, bo) and Or = (b~, ~ )  such that ~f= 
@is = @os and, for arbitrary ( a n  bo) ~ s -  

ais (anbo)=anbo  and a o s ( a n b o ) = ~  (4.1) 

(all aos are null questions). 
Let f =  (bo, b) be an effect procedure; then f - : =  (bo, bo\b) is an effect 

procedure such that @s = @f- and, for arbitrary ( a n  bo)e@f, 

af-(a n bo) = a c~ bo\a n b (4.2) 

Proof ~ e q l  implies ~ = ~ n b o e ~ y .  Moreover, n (ajc~bo) = 
( n  aj) n b| proves (i2); i.e., Nf satisfies condition (i) in Definition 2.2. From 
b ~_ b| it follows that as(a n bo) ~- a n bo, which is (ii) of Definition 2.2. Lastly, 
if a~ nbo,  a2 c~ boP| then we have 

r ~ bo) n (a2 n b• = b n (a, n a2 ~ bo) = (al n b) n (a2 n b) 

= af(al n bo) n (a2 n bo) 

which proves (iii) of Definition 2.2. The other results are straightforward 
once one notes that for every boeNo, (bo, ~ ) ~  and (bo, bo)e~ .  �9 

Remark 4.5. In this way, to any effect procedure f =  (bo, b) of Ludwig's 
approach we have associated a question 

af: ~fl-"r ~C(| a n b| --, af(a nbo) : = a n  b 

of Piron's approach. 
Consistently with the nomenclature about questions (Section 2.1), the 

pair (a r bo, ct s ) is a yes-no experiment consisting of the preparing process 
a r b| and the question aT, with associated recording process a n b. To be 
precise, the preparing procedure a, which describes "the procedure by which 
physical systems are prepared," and the recording methods b0, which "rep- 
resents the construction and employment of a recording apparatus" (Lud- 
wig, 1977), give rise to the preparing process a n b| the test of the question 
af on each individual sample prepared in this process furnishes the measuring 
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process a c~ b consisting of all the samples which have produced the answer 
"yes." 

The mapp ingf~  a f ,  in general, is neither one-to-one nor onto; it could 
happen that different effect procedures give rise to a unique question and 
that there is some question for 5:(0) which cannot be obtained by any 
effect procedures according to the now outlined construction. Because of 
the physical interpretation of (bo, b) we consider as L-questions only those 
questions for 5:(0) induced by effect procedures. 

Theorem 4.6. Let PR := (q/, (~0, ~ ) )  be a complete Ludwig preparing- 
recording structure; then, for 

(a) I: . ~ ( ~ - ) ~  ~(~-) is the unary operator associating to any L- 
question af the L-question I~::= a~: of (4.1) 

(b) ~: ~( f f )  ~ ~( f f )  is the unary operator associating to any L-ques- 
tion a: the L-question (a:)~: = a:~ of (4.2) 

PQ(PR) := (5:(| ~( f f )  ; O; I, - )  is a preparing-question structure accord- 
ing to Definition 2.4 such that for any family of effect procedures { f := 
(b~o j), b(J))}, the effect procedure Afj:= ( ~ j  bo ~ 0 j  b u3) exists which satisfies 

u~ boC:)) a z~A(an ((']jbo ))=(-]j a~(a~ (4.3) 

In this way we have that PQ(PR) is an L preparing-question structure 
according to Definition 2.11. 

Proo f  From b s R  and b o s ~ o ~  it follows that b o \ b ~  and so 
(bo, b\bo) is an effect procedure. Moreover, from af (a  n bo) = a n b we get 
that 

( a:  )~(a n bo) =a  c~ bo\a c~ b =a  n (bo\b) 

and so 

a:~(a n bo) = a n (bo\b) = (a s )~(a n bo) 

Moreover, 

~ ( a  ~ ( N j  b(o:~)) = ~ ~ ( N j  b (:~) = A:  (a ~ b ~ )  

=N:a~(a~b<o :~) �9 
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Remark 4. 7. Let Vj, b(o j) = bo, i.e., { f j=  (bo, b(J))} ; then (~j b(o s~ = bo and 
(4.3) assumes the form 

ct ~D(a c~ bo) = N j afs(a n bo) 

Definition 4.8. An effect procedure f =  (bo, b) is said to be true (respec- 
tively, false) in the preparing procedure a, written (a, (bo, b))T [respectively, 
(a, (bo, b))F], iff (a ca bo, a f) T [respectively, (a ca bo, aT)F]. Hence, 

(a,(bo,  b ) ) T  iff a c a b = a c a b o  

(a,(bo,  b ) )F  iff a n b =  

Remark 4. 9. We can prove that 

( a , f ) T  and al~_a imply ( a i , f ) T  

Indeed, al -~ a and a ca bo = a n b imply 

a i  ca bo = (a i  ca a )  ca bo = a l  n ( a  ca bo) 

= a l  ~ ( a  ca b)  = (a i  ca a )  c~ b 

=al c~b 

Definition 4.10, Two effect p rocedures f '=  (b~, b') and f "= (b~, b') are 
said to be performable together, w r i t t e n f ' ( p t ) f " ,  iff the corresponding ques- 
tions a/, and a/,, are performable together. Thus 

f ' ( p t ) f "  iff 3a ' ,a"eq l ,  a'cab~--a'c~b'~ 

Lastly, we characterize a particular class of effect procedures. 

Proposition 4.11. Let f = ( b o ,  b) be an effect procedure; then Vas~,  
a n b s ~  implies that the induced question ~b/is a filter, i.e., it satisfies 
~b/(~f) ~-~I; in turn this condition is equivalent to the fact that ~b is an 
idempotent filter. 

Proof  Let ac~b~Ull for every a e ~ ;  then, for arbitrary a ~ ,  
~f( a c~ bo ) = a n b ( s ql ) = ( a n  b) n bo ~ @ f . On the other hand, if ~b i i s a  filter, 
then for every as~//we have that a ca b = ~b/(a ca b o ) ~ f ;  from this we get 

dp~ ( a n  bo) = (~f(a ca b) = (~f( (a ca b) c~ bo) = (a ca b) c~ b = a n b = ~f(a ca bo) 

Conversely, if ~b/is idempotent, then for every a c~bos@/, (~/(ac~bo) = 
~ ( a n b o ) = ~ 1 ( a n b )  [and so necessarily it must be that a n b s @ / ,  i.e., 
there exists a* ~ q/such that a ca b = a* n b0], from which we get ~b/(a ca b0) = 
~ / a s ( a c a b ) = ( a n b ) n b o = a c a b s @  s, obtaining that ~bs(anbo)6~ f. �9 

In conclusion, in this section we have recovered a Piron preparing- 
question structure from a complete Ludwig preparing-recording structure. 
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5. STATISTICAL SELECTION-QUESTION STRUCTURE 

In the theory developed up to now we have considered Ludwig's selec- 
tion structure without any statistical notion. In this section we investigate 
some preliminary results involving probability notions. 

Definition 5.1. A structure of pre-statistical selection procedures or 
briefly a pre-statistical selection structure based on the set M is any pair 
(50, v)  where 50 is a selection structure for M; and v: 5" ~ R+, called an 
absolute quantum counter, is a mapping satisfying the following conditions: 

(AM1) For any xl,  x2e50, xlc~x2=f2~ and xlwx2~50 imply 
v(x ,  • x2) = v ( x , )  + v(x2). 

(AM2) v(x) = 0 i f f x =  ~ .  

Remark 5.2. Neumann (1983) has called an effective measure any map- 
ping v: 5" ~-~ R+ which satisfies (AM1) and (AM2). Any effective measure 
satisfies the further property: 

(AM3) Let x, ye50; then x ~ y  implies v (x )<v(y ) .  

Indeed, from x~_y we get y = x w  (y \x)  and so (AM3) follows from 
(AM1). 

The physical interpretation of the formula v(x) is as follows: 

The real quantity v(x) is the total number of individual samples [or the 
intensity (Mielnik, 1969)] of the ensemble prepared in x. 

An effective measure v on 5" induces a relative probability (partially defined) 
in 5 ~ x 50 according to the following results (Neumann, 1983). 

Let J (50 )  = {(x, y): x, ye50, yc_x, and x r  then Proposition 5.3. 
the mapping 

defined by 

X: J (50 )  v--> [0, 1] 

v(y) 
Z(x,y):= 

v(x) 

satisfies the following conditions: 

1. xl , x2e50, xl n x2= fZJ, xl w x2~50 imply 

A. (xl w xz, xl) + X (xl w x2, x2) = 1 
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2. xl ,  x2, x3eSe, x3c=x2c=xl, X2@~J imply 

Z (xl, x3) = Z (x2, x3),~ (x,,  x2) 

3. x l ,  x2e5 a, x2~-xl, x 2 r  imply s  x2) r  
4. For every x e 5  a 

,~ (x, x) = 1, ~ (x, ;2~) = 0 

5. Xl, X2, X 3 e ~  , x2C=xI, X3~-Xl, X2(")X3=~ imply 

(x~, x~ • x~) = X (x~, x~) + X (x~, x3) 

Proof We prove point 5 only; the proofs of the other points are 
straightforward. Since xl w x 3 = x T \ ( x l \ x 2 n x ~ \ x 3 ) ,  from Definition 5.1 
it follows that x2wx3eSe .  Moreover, from x2, x3~_x~ we have that 
x2 w x 3 ~ x l .  From these results we get 

X(x,, x2wx~)- v(x2~x3)_ v(x~)+ v(x3) 

v(x,) v(x,) 

=~(v'x2~+ v(x3) �9 
v(x,) v(x,) 

As a consequence of  points 1-3 of  Proposition 5.3 we have that the pair 
( J ,  s  is a structure of  statistical selection procedure (or briefly, a statistical 
selection structure) of Ludwig's approach: " s  is usually called the 
probability of y relative to x. 2. (x, y) is the mathematical picture of the 
frequency with which y selects relative to x ( . . . ) .  With this 'interpretation' 
of  ,~ (x, y) at hand, the reader may easily check the 'physical' significance of 
[1-3, Proposition 5.3] ( . . . ) .  From [1-3] we obtain [4 and 5]" (Ludwig, 
t977). Note that in any "laboratory" (x,  5~ where x~SZ and 
Y ( x ) : =  {y: y e 9  ~ and y~_x} (which is a Boolean algebra with unit for x), 
the mapping fi : 5P(x) ~-* [0, 1] defined by the law Vye 5P(x), f i (y) :=/ ;  (x, y) 
is a finitely additive (positive) measure of  mass one [which can be considered 
a probability measure on the Boolean algebra 5Z(x)]. 

Definition 5.4. A statistical preparation-question structure (briefly, 
s-pq-s) is any triple ( (5  ~, v), .~) where (5  e, v )  is a statistical selection 
structure; and (5  e, ~ )  is a preparation-question structure. 

Let ( (5  P, v), .~) be an s-pq-s. Then we introduce the partial mapping 

p: ( J  • ~)p ~ [0, 1] 
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defined for every a ~  and every x ~ "  by 

p(x, a):= ;~ (x, a(x)) = - -  

Putting 

v(a(x))  

v(x) 

Cattaneo and Nistic6 

:(~)= N (~') 
aE~ 

we obtain that the restriction of p to 5:(.~) x .~ is total. 
Given a selection procedure x ~ @ ' ,  the number p(x, a) is physically 

interpreted as the probability that the physical entity prepared in x gives the 
answer yes to the question a. We have the following result. 

Proposition 5.5. Let ((50, v), 2 )  be an s-pq-s; then for every a~.~ and 
every x~@" 

p(x, a ) = l  iff (x ,a )T  (5.1) 

Proof Suppose that p(x, a) = 1, i.e., v(a(x)) = v(x). We have 

x = a(x) w x\a(x), where a(x) n x\a(x) = ~ (5.2) 

From (AM1) it follows that 

v(x) = v(a(x))  + v(x \a(x) )  = v(x) + v (x \a(x) )  

Therefore, v(x\a (x)) = 0 and so, by (AM2), we get x\a  (x) = ~ ;  substituting 
this result in (5.2), we obtain a(x)=x. The converse is trivial. �9 

The result (5.1) says that in the context of an s-pq-s our formalization 
of "true with certainty" [(x, a )T i f f  a(x)=x] is equivalent to "probability 
one" [p(x, a) = 1], as for most quantum physicists and mathematicians. 

In the context of an L-pr-s introduced in Section 4, PR = (~', (~0, ~ ) ) ,  
if the complete selection structure 5:(O) generated by 

O =  { a n  b: aE://, b6~}  

is a pre-statistical selection structure with absolute quantum counter v:(o), 
then according to Ludwig, we can introduce the mapping 

p:  ~ # x ~  ~ [0, 1] 

defined for every preparing procedure a ~ q / a n d  every effect f =  (b0, b ) ~ -  
by 

v~(o~(a n b) 
p(a, (bo, b)):= ~:(o)(a c~ bo, a n b) - =p~(o)(a nbo, a@o,b)) 

v:~o~(a n bo) 
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which is equal to the probability of  occurrence of the question Ol(bo,b) in the 
preparation a n bo of the associated L-pq-s. Recall that (a n bo, a(bo,b))Tiff 
a n b = a n b0 (see Definition 4.8). 

6. CONCLUSION 

In the present work we constructed a model of  the basic Piron theory 
(without Axioms C, P, A) in terms of Ludwig's selection structure (without 
statistical notions); we also investigated some preliminary extensions to 
Ludwig's statistical selection structure. As a subject of  further interest, one 
should show in which way a modelization of the complete Piron theory is 
related to Ludwig's approach; precisely, one should point out which mod- 
ifications (if present) are needed in Ludwig's formalization so that Piron's 
Axioms C, P, A turn out to be theorems of the proposed model. We think 
that this study can lead to a deeper knowledge of  the two approaches. 
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